Bibliography





Notice:

  • Clicking on the title will open a new window with all details of the bibliographic entry.
  • Clicking on the DOI link will open a new window with the original bibliographic entry from the publisher.
  • Clicking on a single author will show all publications by the selected author.
  • Clicking on a single keyword, will show all publications by the selected keyword.



Found 28 entries in the Bibliography.


Showing entries from 1 through 28


2021

Can Earth’s magnetotail plasma sheet produce a source of relativistic electrons for the radiation belts?

Abstract Simultaneous observations from Van Allen Probes (RBSP) in Earth’s outer radiation belt (∼4-6 RE) and Magnetospheric Multiscale (MMS) in the magnetotail plasma sheet at >20 RE geocentric distance are used to compare relative levels of relativistic electron phase space density (PSD) for constant values of the first adiabatic invariant, M. We present new evidence from two events showing: i) at times, there is sufficient PSD in the central plasma sheet to provide a source of >1 MeV electrons into the outer belt; ii) the most intense levels of relativistic electrons are not accelerated in the solar wind or transported from the inner magnetosphere and thus must be accelerated rapidly (within ∼minutes or less) and efficiently across a broad region of the magnetotail itself; and iii) the highest intensity relativistic electrons observed by MMS were confined within only the central plasma sheet. The answer to the title question here is: yes, it can, however whether Earth’s plasma sheet actually does provide a source of several 100s keV to >1 MeV electrons to the outer belt and how often it does so remain important outstanding questions.

Turner, Drew; Cohen, Ian; Michael, Adam; Sorathia, Kareem; Merkin, Slava; Mauk, Barry; Ukhorskiy, Sasha; Murphy, Kyle; Gabrielse, Christine; Boyd, Alexander; Fennell, Joseph; Blake, Bernard; Claudepierre, Seth; Drozdov, Alexander; Jaynes, Allison; Ripoll, Jean-Francois; Reeves, Geoffrey;

Published by: Geophysical Research Letters      Published on: 09/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2021GL095495

Radiation belts; plasma sheet; Particle acceleration; relativistic electrons; inner magnetosphere; magnetotail; Van Allen Probes

Observations and simulations of dropout events and flux decays in October 2013: Comparing MEO equatorial with LEO polar orbit

Abstract We compare ESA PROBA-V observations of electron flux at LEO with those from the NASA Van Allen Probes mostly at MEO for October 2013. Dropouts are visible at all energy during 4 storms from both satellites. Equatorial trapped electron fluxes are higher than at LEO by 102 (<1 MeV) to 105 (>2.5 MeV). We observe a quite isotropic structure of the outer belt during quiet times, contrary to the inner belt, and pitch angle dependence of high energy injection. We find very good overlap of the outer belt at MEO and LEO at ∼0.5 MeV. We use test-particle simulations of the energetic electrons trapped in the terrestrial magnetic field to study the outer radiation belt electron flux changes during geomagnetic storms. We show that the Dst (Disturbance storm time) effect during the main phase of a geomagnetic storm results in a betatron mechanism causing outward radial drift and a deceleration of the electrons. This outward drift motion is energy independent, pitch angle dependent, and represent a significant distance (∼1 L-shell at L=5 for moderate storms). At fixed L-shell, this causes a decay of the LEO precipitating flux (adiabatic outward motion), followed by a return to the normal state (adiabatic inward motion) during main and recovery phases. Dst effect, associated with magnetopause shadowing and radial diffusion can explain the main characteristics of outer radiation belt electron dropouts in October 2013. We also use Fokker-Planck simulations with event-driven diffusion coefficients at high temporal resolution, in order to distinguish instantaneous loss from the gradual scattering that depopulates the slot region and the outer belt after storms. Simulations reproduce the slot formation and the gradual loss in the outer belt. The typical energy-dependence of these losses leads to the absence of scattering for relativistic and ultra-relativistic electrons in the outer belt, oppositely to dropouts.

Pierrard, V.; Ripoll, J.-F.; Cunningham, G.; Botek, E.; Santolik, O.; Thaller, S.; Kurth, W.; Cosmides, M.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2021

YEAR: 2021     DOI: https://doi.org/10.1029/2020JA028850

Radiation belts; relativistic electrons; Geomagnetic storms; energetic particles; Van Allen Probes

2020

Evolution of pitch angle distributions of relativistic electrons during geomagnetic storms: Van Allen Probes Observations

We present a study analyzing relativistic and ultra relativistic electron energization and the evolution of pitch angle distributions using data from the Van Allen Probes. We study the connection between energization and isotropization to determine if there is a coherence across storms and across energies. Pitch angle distributions are fit with a J0sinnθ function, and the variable ’n’ is characterized as the pitch angle index and tracked over time. Our results show that, consistently across all storms with ultra relativistic electron energization, electron distributions are most anisotropic within around a day of Dstmin and become more isotropic in the following week. Also, each consecutively higher energy channel is associated with higher anisotropy after storm main phase. Changes in the pitch angle index are reflected in each energy channel; when 1.8 MeV electron pitch angle distributions increase (or decrease) in pitch angle index, so do the other energy channels. We show that the peak anisotropies differ between CME- and CIR- driven storms and measure the relaxation rate as the anisotropy falls after the storm. The isotropization rate in pitch angle index for CME-driven storms is -0.15±0.02 day−1 at 1.8 MeV, -0.30±0.01 day−1 at 3.4 MeV, and -0.39±0.02 day−1 at 5.2 MeV. For CIR-driven storms, the isotropization rates are -0.10±0.01 day−1 for 1.8 MeV, -0.13±0.02 day−1 for 3.4 MeV, and -0.11±0.02 day−1 for 5.2 MeV. This study shows that there is a global coherence across energies and that storm type may play a role in the evolution of electron pitch angle distributions.

Greeley, Ashley; Kanekal, Shrikanth; Sibeck, David; Schiller, Quintin; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2020JA028335

pitch angle distributions; relativistic electrons; ultra relativistic electrons; Van Allen Probes; pitch angle distribution evolution; anisotropic electrons

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Abstract Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Electron Radiation Belt code. We set up the outer L* boundary using data from the Geostationary Operational Environmental Satellites and validate the simulation results against satellite observations from both the Geostationary Operational Environmental Satellites and Van Allen Probe missions for 0.9-MeV electrons. Our results show that the position of the plasmapause plays a significant role in the dynamic evolution of relativistic electrons. The magnetopause shadowing effect is included by using last closed drift shell, and it is shown to significantly contribute to the dropouts of relativistic electrons at high L*. We perform simulations using four different empirical radial diffusion coefficient models for the GEM challenge events, and the results show that these simulations reproduce the general dynamic evolution of relativistic radiation belt electrons. However, in the events shown here, simulations using the radial diffusion coefficients from Brautigam and Albert (2000) produce the best agreement with satellite observations.

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: 10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

The Effect of Plasma Boundaries on the Dynamic Evolution of Relativistic Radiation Belt Electrons

Understanding the dynamic evolution of relativistic electrons in the Earth s radiation belts during both storm and nonstorm times is a challenging task. The U.S. National Science Foundation s Geospace Environment Modeling (GEM) focus group “Quantitative Assessment of Radiation Belt Modeling” has selected two storm time and two nonstorm time events that occurred during the second year of the Van Allen Probes mission for in-depth study. Here, we perform simulations for these GEM challenge events using the 3D Versatile Electron Radiation Belt code. We set up the outer L* boundary using data from the Geostationary Operational Environmental Satellites and validate the simulation results against satellite observations from both the Geostationary Operational Environmental Satellites and Van Allen Probe missions for 0.9-MeV electrons. Our results show that the position of the plasmapause plays a significant role in the dynamic evolution of relativistic electrons. The magnetopause shadowing effect is included by using last closed drift shell, and it is shown to significantly contribute to the dropouts of relativistic electrons at high L*. We perform simulations using four different empirical radial diffusion coefficient models for the GEM challenge events, and the results show that these simulations reproduce the general dynamic evolution of relativistic radiation belt electrons. However, in the events shown here, simulations using the radial diffusion coefficients from Brautigam and Albert (2000) produce the best agreement with satellite observations.

Wang, Dedong; Shprits, Yuri; Zhelavskaya, Irina; Effenberger, Frederic; Castillo, Angelica; Drozdov, Alexander; Aseev, Nikita; Cervantes, Sebastian;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2020

YEAR: 2020     DOI: https://doi.org/10.1029/2019JA027422

Radiation belt; simulation; relativistic electrons; magnetopause shadowing; Wave-particle interaction; Plasmapause; Van Allen Probes

Radial Response of Outer Radiation Belt Relativistic Electrons During Enhancement Events at Geostationary Orbit

Abstract Forecasting relativistic electron fluxes at geostationary Earth orbit (GEO) has been a long-term goal of the scientific community, and significant advances have been made in the past, but the relation to the interior of the radiation belts, that is, to lower L-shells, is still not clear. In this work we have identified 60 relativistic electron enhancement events at GEO to study the radial response of outer belt fluxes and the correlation between the fluxes at GEO and those at lower L-shells. The enhancement events occurred between 1 October 2012 and 31 December 2017 and were identified using Geostationary Operational Environmental Satellite (GOES) 15 >2 MeV fluxes at GEO, which we have used to characterize the radial response of the radiation belt, by comparing to fluxes measured by the Van Allen probes Energetic Particle, Composition and Thermal Plasma Suite Relativistic Electron-Proton Telescope (ECT-REPT) between 2.55.0 and generally similar for L>4.5. Post-enhancement maximum fluxes show a remarkable correlation for all L>4.0 although the magnitude of the pre-existing fluxes on the outer belt plays a significant role and makes the ratio of pre-enhancement to post-enhancement fluxes less predictable in the region 4.0

Pinto, Victor; Bortnik, Jacob; Moya, Pablo; Lyons, Larry; Sibeck, David; Kanekal, Shrikanth; Spence, Harlan; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2020

YEAR: 2020     DOI: 10.1029/2019JA027660

Radiation belts; relativistic electrons; geosynchronous orbit; Outer Belt; flux correlation; enhancement events; Van Allen Probes

2019

Cyclotron Acceleration of Relativistic Electrons Through Landau Resonance With Obliquely Propagating Whistler-Mode Chorus Emissions

Efficient acceleration of relativistic electrons at Landau resonance with obliquely propagating whistler-mode chorus emissions is confirmed by theory, simulation, and observation. The acceleration is due to the perpendicular component of the wave electric field. We first review theoretical analysis of nonlinear motion of resonant electrons interacting with obliquely propagating whistler-mode chorus. We have derived formulae of inhomogeneity factors for Landau and cyclotron resonances to analyze nonlinear wave trapping of energetic electrons by an obliquely propagating chorus element. We performed test particle simulations to confirm that nonlinear wave trapping by both Landau and cyclotron resonances can take place for a wide range of energies. For an element of large amplitude chorus waves observed by the Van Allen Probes, we have performed detailed analyses of the wave form data based on theoretical framework of nonlinear trapping of resonant electrons. We compare the efficiencies of accelerations by cyclotron and Landau resonances. We find significant acceleration can take place both in Landau and cyclotron resonances. What controls the dynamics of relativistic electrons in the Landau resonance is the perpendicular field components rather than the parallel electric field of the oblique chorus wave. In evaluating the efficiency of nonlinear trapping, we have taken into account variation of the wave trapping potential structure controlled by the inhomogeneity factors.

Omura, Yoshiharu; Hsieh, Yi-Kai; Foster, John; Erickson, Philip; Kletzing, Craig; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 04/2019

YEAR: 2019     DOI: 10.1029/2018JA026374

inner magnetosphere; nonlinear process; Radiation belts; relativistic electrons; Van Allen Probes; wave particle interaction; whistler-mode chorus

The Response of Earth\textquoterights Electron Radiation Belts to Geomagnetic Storms: Statistics From the Van Allen Probes Era Including Effects From Different Storm Drivers

A statistical study was conducted of Earth\textquoterights radiation belt electron response to geomagnetic storms using NASA\textquoterights Van Allen Probes mission. Data for electrons with energies ranging from 30 keV to 6.3 MeV were included and examined as a function of L-shell, energy, and epoch time during 110 storms with SYM-H <=-50 nT during September 2012 to September 2017 (inclusive). The radiation belt response revealed clear energy and L-shell dependencies, with tens of keV electrons enhanced at all L-shells (2.5 <= L <= 6) in all storms during the storm commencement and main phase and then quickly decaying away during the early recovery phase, low hundreds of keV electrons enhanced at lower L-shells (~3 <= L <= ~4) in upward of 90\% of all storms and then decaying gradually during the recovery phase, and relativistic electrons throughout the outer belt showing main phase dropouts with subsequent and generally unpredictable levels of replenishment during the recovery phase. Compared to prestorm levels, electrons with energies >1 MeV also revealed a marked increase in likelihood of a depletion at all L-shells through the outer belt (3.5 <= L <= 6). Additional statistics were compiled revealing the storm time morphology of the radiation belts, confirming the aforementioned qualitative behavior. Considering storm drivers in the solar wind: storms driven by coronal mass ejection (CME) shocks/sheaths and CME ejecta only are most likely to result in a depletion of >1-MeV electrons throughout the outer belt, while storms driven by full CMEs and stream interaction regions are most likely to produce an enhancement of MeV electrons at lower (L < ~5) and higher (L > ~4.5) L-shells, respectively. CME sheaths intriguingly result in a distinct enhancement of ~1-MeV electrons around L~5.5, and on average, CME sheaths and stream interaction regions result in double outer belt structures.

Turner, D.; Kilpua, E.; Hietala, H.; Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Jaynes, A.; Kanekal, S.; Baker, D.; Spence, H.; Ripoll, J.-F.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026066

energetic particles; Geomagnetic storms; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions

A Revised Look at Relativistic Electrons in the Earth\textquoterights Inner Radiation Zone and Slot Region

We describe a new, more accurate procedure for estimating and removing inner zone background contamination from Van Allen Probes Magnetic Electron Ion Spectrometer (MagEIS) radiation belt measurements. This new procedure is based on the underlying assumption that the primary source of background contamination in the electron measurements at L shells less than three, energetic inner belt protons, is relatively stable. Since a magnetic spectrometer can readily distinguish between foreground electrons and background signals, we are able to exploit the proton stability to construct a model of the background contamination in each MagEIS detector by only considering times when the measurements are known to be background dominated. We demonstrate, for relativistic electron measurements in the inner zone, that the new technique is a significant improvement upon the routine background corrections that are used in the standard MagEIS data processing, which can \textquotedblleftovercorrect\textquotedblright and therefore remove real (but small) electron fluxes. As an example, we show that the previously reported 1-MeV injection into the inner zone that occurred in June of 2015 was distributed more broadly in L and persisted in the inner zone longer than suggested by previous estimates. Such differences can have important implications for both scientific studies and spacecraft engineering applications that make use of MagEIS electron data in the inner zone at relativistic energies. We compare these new results with prior work and present more recent observations that also show a 1-MeV electron injection into the inner zone following the September 2017 interplanetary shock passage.

Claudepierre, S.; O\textquoterightBrien, T.; Looper, M.; Blake, J.; Fennell, J.; Roeder, J.; Clemmons, J.; Mazur, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2019

YEAR: 2019     DOI: 10.1029/2018JA026349

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

2017

Relativistic electron increase during chorus wave activities on the 6-8 March 2016 geomagnetic storm

There was a geomagnetic storm on 6\textendash8 March 2016, in which Van Allen Probes A and B separated by \~2.5 h measured increase of relativistic electrons with energies \~ several hundred keV to 1 MeV. Simultaneously, chorus waves were measured by both Van Allen Probes and Magnetospheric Multiscale (MMS) mission. Some of the chorus elements were rising-tones, possibly due to nonlinear effects. These measurements are compared with a nonlinear theory of chorus waves incorporating the inhomogeneity ratio and the field equation. From this theory, a chorus wave profile in time and one-dimensional space is simulated. Test particle calculations are then performed in order to examine the energization rate of electrons. Some electrons are accelerated, although more electrons are decelerated. The measured time scale of the electron increase is inferred to be consistent with this nonlinear theory.

Matsui, H.; Torbert, R.; Spence, H.; Argall, M.; Alm, L.; Farrugia, C.; Kurth, W.; Baker, D.; Blake, J.; Funsten, H.; Reeves, G.; Ergun, R.; Khotyaintsev, Yu.; Lindqvist, P.-A.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024540

chorus waves; Geomagnetic storm; relativistic electrons; Van Allen Probes

A Statistical Study of the Spatial Extent of Relativistic Electron Precipitation with Polar Orbiting Environmental Satellites.

Relativistic Electron Precipitation (REP) in the atmosphere can contribute significantly to electron loss from the outer radiation belts. In order to estimate the contribution to this loss, it is important to estimate the spatial extent of the precipitation region. We observed REP with the zenith pointing (0o) Medium Energy Proton Electron Detector (MEPED) on board Polar Orbiting Environmental Satellites (POES), for 15 years (2000-2014) and used both single and multi satellite measurements to estimate an average extent of the region of precipitation in L shell and Magnetic Local Time (MLT). In the duration of 15 years (2000-2014), 31035 REP events were found in this study. Events were found to split into two classes; one class of events coincided with proton precipitation in the P1 channel (30-80 keV), were located in the dusk and early morning sector, and were more localized in L shell (dL<0.5), whereas the other class of events did not coincide with proton precipitation, were located mostly in the midnight sector and were wider in L shell (dL \~ 1-2.5). Both classes were highly localized in MLT (dMLT <= 3 hrs), occuring mostly during the declining phase of the solar cycle and geomagnetically active times. The events located in the midnight sector for both classes were found to be associated with tail magnetic field stretching which could be due to the fact that they tend to occur mostly during geomagnetically active times, or could imply that precipitation is caused by current sheet scattering.

Shekhar, Sapna; Millan, Robyn; Smith, David;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024716

Magnetosphere; precipitation; Radiation belts; relativistic electrons; spatial scale of REP; Van Allen Probes; wave particle scattering

On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations

Using Van Allen Probes ECT-REPT observations we performed a statistical study on the effect of geomagnetic storms on relativistic electrons fluxes in the outer radiation belt for 78 storms between September 2012 and June 2016. We found that the probability of enhancement, depletion and no change in flux values depends strongly on L and energy. Enhancement events are more common for \~ 2 MeV electrons at L \~ 5, and the number of enhancement events decreases with increasing energy at any given L shell. However, considering the percentage of occurrence of each kind of event, enhancements are more probable at higher energies, and the probability of enhancement tends to increases with increasing L shell. Depletion are more probable for 4-5 MeV electrons at the heart of the outer radiation belt, and no change events are more frequent at L < 3.5 for E\~ 3 MeV particles. Moreover, for L > 4.5 the probability of enhancement, depletion or no-change response presents little variation for all energies. Because these probabilities remain relatively constant as a function of radial distance in the outer radiation belt, measurements obtained at Geosynchronous orbit may be used as a proxy to monitor E>=1.8 MeV electrons in the outer belt.

Moya, Pablo.; Pinto, \; Sibeck, David; Kanekal, Shrikanth; Baker, Daniel;

Published by: Journal of Geophysical Research: Space Physics      Published on: 10/2017

YEAR: 2017     DOI: 10.1002/2017JA024735

Geomagnetic storms; Radiation belts; relativistic electrons; Van Allen Probes

Radiation belt seed population and its association with the relativistic electron dynamics: A statistical study

Using the particle data measured by Van Allen Probe A from October 2012 to March 2016, we investigate in detail the radiation belt seed population and its association with the relativistic electron dynamics during 74 geomagnetic storms. The period of the storm recovery phase was limited to 72 h. The statistical study shows that geomagnetic storms and substorms play important roles in the radiation belt seed population (336 keV electrons) dynamics. Based on the flux changes of 1 MeV electrons before and after the storm peak, these storm events are divided into two groups of \textquotedblleftlarge flux enhancement\textquotedblright and \textquotedblleftsmall flux enhancement.\textquotedblright For large flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons (592 keV, 1 MeV, 1.8 MeV, and 2.1 MeV) during the storm recovery phase decrease with electron kinetic energy, being 0.92, 0.68, 0.49, and 0.39, respectively. The correlation coefficients between the peak flux of the seed population and those of relativistic electrons are 0.92, 0.81, 0.75, and 0.73. For small flux enhancement storm events, the correlation coefficients between the peak flux location of the seed population and those of relativistic electrons are relatively smaller, while the peak flux of the seed population is well correlated with those of relativistic electrons (correlation coefficients >0.84). It is suggested that during geomagnetic storms there is a good correlation between the seed population and <=1 MeV electrons and the seed population is important to the relativistic electron dynamics.

Tang, C.; Wang, Y.; Ni, B.; Zhang, J.-C.; Reeves, G.; Su, Z.; Baker, D.; Spence, H.; Funsten, H.; Blake, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2017

YEAR: 2017     DOI: 10.1002/2017JA023905

relativistic electrons; Substorm Injections; the outer radiation belt; the seed population; Van Allen Probes

The hidden dynamics of relativistic electrons (0.7-1.5~MeV) in the inner zone and slot region

We present measurements of relativistic electrons (0.7\textendash1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that \~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As \~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these two events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Finally, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.

Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Clemmons, J.; Looper, M.; Mazur, J.; Roeder, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023719

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

The hidden dynamics of relativistic electrons (0.7-1.5~MeV) in the inner zone and slot region

We present measurements of relativistic electrons (0.7\textendash1.5 MeV) in the inner zone and slot region obtained by the Magnetic Electron and Ion Spectrometer (MagEIS) instrument on Van Allen Probes. The data presented are corrected for background contamination, which is primarily due to inner-belt protons in these low-L regions. We find that \~1 MeV electrons were transported into the inner zone following the two largest geomagnetic storms of the Van Allen Probes era to date, the March and June 2015 events. As \~1 MeV electrons were not observed in Van Allen Probes data in the inner zone prior to these two events, the injections created a new inner belt that persisted for at least 1.5 years. In contrast, we find that electrons injected into the slot region decay on much faster timescales, approximately tens of days. Furthermore, we find no evidence of >1.5 MeV electrons in the inner zone during the entire time interval considered (April 2013 through September 2016). The energies we examine thus span a transition range in the steeply falling inner zone electron spectrum, where modest intensities are observed at 0.7 MeV, and no electrons are observed at 1.5 MeV. To validate the results obtained from the background corrected flux measurements, we also present detailed pulse-height spectra from individual MagEIS detectors. These measurements confirm our results and also reveal low-intensity inner zone and slot region electrons that are not captured in the standard background corrected data product. Finally, we briefly discuss efforts to refine the upper limit of inner zone MeV electron flux obtained in earlier work.

Claudepierre, S.; O\textquoterightBrien, T.; Fennell, J.; Blake, J.; Clemmons, J.; Looper, M.; Mazur, J.; Roeder, J.; Turner, D.; Reeves, G.; Spence, H.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2017

YEAR: 2017     DOI: 10.1002/2016JA023719

Inner zone; particle detectors; Radiation belt; relativistic electrons; Slot region; Space weather; Van Allen Probes

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important\textemdashand potentially dominant\textemdashsource of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off,\textquotedblright geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kaneka, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 01/2017

YEAR: 2017     DOI: 10.1029/1999JA900445

energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

2016

Investigating the source of near-relativistic and relativistic electrons in Earth\textquoterights inner radiation belt

Using observations from NASA\textquoterights Van Allen Probes, we study the role of sudden particle enhancements at low L-shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than one day at L < 3. During quiet and average geomagnetic conditions, the phase space density radial distributions for fixed first and second adiabatic invariants are peaked at 2 < L < 3 for electrons ranging in energy from ~50 keV to ~1 MeV, indicating that slow inward radial diffusion is not the dominant source of inner belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed three orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important - and potentially dominant - source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently (~2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for >=100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day timescales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an \textquotedbllefton/off\textquotedblright, geomagnetic-activity-dependent source from higher radial distances.

Turner, D.; O\textquoterightBrien, T.; Fennell, J.; Claudepierre, S.; Blake, J.; Jaynes, A.; Baker, D.; Kanekal, S.; Gkioulidou, M.; Henderson, M.; Reeves, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 12/2016

YEAR: 2016     DOI: 10.1002/2016JA023600

2720 Energetic Particles; trapped; 2730 Magnetosphere: inner; 2774 Radiation belts; 7807 Charged particle motion and acceleration; 7984 Space radiation environment; energetic particle injections; inner magnetosphere; Radiation belts; relativistic electrons; Van Allen Probes

Compressional ULF wave modulation of energetic particles in the inner magnetosphere

We present Van Allen Probes observations of modulations in the flux of very energetic electrons up to a few MeV and protons between 1200 - 1400 UT on February 19th, 2014. During this event the spacecraft were in the dayside magnetosphere at L*≈5.5. The modulations extended across a wide range of particle energies, from 79.80 keV to 2.85 MeV for electrons and from 82.85 keV to 636.18 keV for protons. The fluxes of π/2 pitch angle particles were observed to attain maximum values simultaneously with the ULF compressional magnetic field component reaching a minimum. We use peak-to-valley ratios to quantify the strength of the modulation effect, finding that the modulation is larger at higher energies than at lower energies. It is shown that the compressional wave modulation of the particle distribution is due to the mirror effect, which can trap relativistic electrons efficiently for energies up to 2.85 MeV, and trap protons up to ≈600 keV. Larger peak-to-valley ratios at higher energies also attributed to the mirror effect. Finally, we suggest that protons with energies higher than 636.18 keV can not be trapped by the compressional ULF wave efficiently due to the finite Larmor radius effect.

Liu, H.; Zong, Q.-G.; Zhou, X.-Z.; Fu, S; Rankin, R.; Wang, L.-H.; Yuan, C.; Wang, Y.; Baker, D.; Blake, J.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016JA022706

Compressional ULF wave; energetic particles; Magnetosphere; Mirror effect; Modulation; relativistic electrons; Van Allen Probes

Occurrence Characteristics of Outer Zone Relativistic Electron Butterfly Distribution: A Survey of Van Allen Probes REPT Measurements

Using Van Allen Probes REPT pitch angle resolved electron flux data from September 2012 to March 2015, we investigate in detail the global occurrence pattern of equatorial (|λ| <= 3\textdegree) butterfly distribution of outer zone relativistic electrons and its potential correlation with the solar wind dynamic pressure. The statistical results demonstrate that these butterfly distributions occur with the highest occurrence rate ~ 80\% at ~ 20 \textendash 04 MLT and L > ~ 5.5 and with the second peak (> ~ 50 \%) at ~ 11 \textendash 15 MLT of lower L-shells ~ 4.0. They can also extend to L = 3.5 and to other MLT intervals but with the occurrence rates predominantly < ~25\%. It is further shown that outer zone relativistic electron butterfly distributions are likely to peak between 58\textdegree - 79\textdegree for L = 4.0 and 5.0 and between 37\textdegree - 58\textdegree for L = 6.0, regardless of the level of solar wind dynamic pressure. Relativistic electron butterfly distributions at L = 4.0 also exhibit a pronounced day-night asymmetry in response to the Pdynvariations. Compared to the significant L-shell and MLT dependence of the global occurrence pattern, outer zone relativistic electron butterfly distributions show much less but still discernable sensitivity to Pdyn, geomagnetic activity level, and electron energy, the full understanding of which requires future attempts of detailed simulations that combine and differentiate underlying physical mechanisms of the geomagnetic field asymmetry and scattering by various magnetospheric waves.

Ni, Binbin; Zou, Zhengyang; Li, Xinlin; Bortnik, Jacob; Xie, Lun; Gu, Xudong;

Published by: Geophysical Research Letters      Published on: 05/2016

YEAR: 2016     DOI: 10.1002/2016GL069350

butterfly pitch angle distributions; global occurrence pattern; outer radiation belt; relativistic electrons; Van Allen Probes

Forecasting and remote sensing outer belt relativistic electrons from low Earth orbit

This study demonstrates the feasibility and reliability of using observations from low Earth orbit (LEO) to forecast and nowcast relativistic electrons in the outer radiation belt. We first report a high cross-energy, cross-pitch-angle coherence discovered between the trapped MeV electrons and precipitating approximately hundreds (~100s) of keV electrons\textemdashobserved by satellites with very different altitudes\textemdashwith correlation coefficients as high as ≳ 0.85. Based upon the coherence, we then tested the feasibility of applying linear prediction filters to LEO data to predict the arrival of new MeV electrons during geomagnetic storms, as well as their evolving distributions afterward. Reliability of these predictive filters is quantified by the performance efficiency with values as high as 0.74 when driven merely by LEO observations (or up to 0.94 with the inclusion of in situ MeV electron measurements). Finally, a hypothesis based upon the wave-particle resonance theory is proposed to explain the coherence, and a first-principle electron tracing model yields supporting evidence.

Chen, Yue; Reeves, Geoffrey; Cunningham, Gregory; Redmon, Robert; Henderson, Michael;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2015GL067481

forecast and nowcast; hundreds of keV precipitating electrons; LEO observations; Radiation belts; relativistic electrons; wave particle interactions

Relativistic electron microbursts and variations in trapped MeV electron fluxes during the 8-9 October 2012 storm: SAMPEX and Van Allen Probes observations

It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8\textendash9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.

Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, Bernard; Reeves, Geoffery; Kletzing, Craig;

Published by: Geophysical Research Letters      Published on: 02/2016

YEAR: 2016     DOI: 10.1002/2016GL068260

Radiation belts; relativistic electron microbursts; relativistic electrons; SAMPEX; Van Allen Probes; whistler mode chorus

2015

Formation process of relativistic electron flux through interaction with chorus emissions in the Earth\textquoterights inner magnetosphere

We perform test particle simulations of energetic electrons interacting with whistler mode chorus emissions. We compute trajectories of a large number of electrons forming a delta function with the same energy and equatorial pitch angle. The electrons are launched at different locations along the magnetic field line and different timings with respect to a pair of chorus emissions generated at the magnetic equator. We follow the evolution of the delta function and obtain a distribution function in energy and equatorial pitch angle, which is a numerical Green\textquoterights function for one cycle of chorus wave-particle interaction. We obtain the Green\textquoterights functions for the energy range 10 keV\textendash6 MeV and all pitch angles greater than the loss cone angle. By taking the convolution integral of the Green\textquoterights functions with the distribution function of the injected electrons repeatedly, we follow a long-time evolution of the distribution function. We find that the energetic electrons are accelerated effectively by relativistic turning acceleration and ultrarelativistic acceleration through nonlinear trapping by chorus emissions. Further, these processes result in the rapid formation of a dumbbell distribution of highly relativistic electrons within a few minutes after the onset of the continuous injection of 10\textendash30 keV electrons.

Omura, Yoshiharu; Miyashita, Yu; Yoshikawa, Masato; Summers, Danny; Hikishima, Mitsuru; Ebihara, Yusuke; Kubota, Yuko;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021563

Chorus; nonlinear wave-particle interaction; Particle acceleration; Radiation belts; relativistic electrons; simulation

Responses of relativistic electron fluxes in the outer radiation belt to geomagnetic storms

Geomagnetic storms can either increase or decrease relativistic electron fluxes in the outer radiation belt. A statistical survey of 84 isolated storms demonstrates that geomagnetic storms preferentially decrease relativistic electron fluxes at higher energies, while flux enhancements are more common at lower energies. In about 87\% of the storms, 0.3\textendash2.5 MeV electron fluxes show an increase, whereas 2.5\textendash14 MeV electron fluxes increase in only 35\% of the storms. Superposed epoch analyses suggest that such \textquotedblleftenergy-dependent\textquotedblright responses of electrons preferably occur during conditions of high solar wind density which is favorable to generate magnetospheric electromagnetic ion cyclotron (EMIC) waves, and these events are associated with relatively weaker chorus activities. We have examined one of the cases where observed EMIC waves can resonate effectively with >2.5 MeV electrons and scatter them into the atmosphere. The correlation study further illustrates that electron flux dropouts during storm main phases do not correlate well with the flux buildup during storm recovery phases. We suggest that a combination of efficient EMIC-induced scattering and weaker chorus-driven acceleration provides a viable candidate for the energy-dependent responses of outer radiation belt relativistic electrons to geomagnetic storms. These results are of great interest to both understanding of the radiation belt dynamics and applications in space weather.

Xiong, Ying; Xie, Lun; Pu, Zuyin; Fu, Suiyan; Chen, Lunjin; Ni, Binbin; Li, Wen; Li, Jinxing; Guo, Ruilong; Parks, G.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 11/2015

YEAR: 2015     DOI: 10.1002/2015JA021440

energy dependence; Geomagnetic storm; Radiation belts; relativistic electrons; Solar wind

Relativistic electron response to the combined magnetospheric impact of a coronal mass ejection overlapping with a high-speed stream: Van Allen Probes observations

During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth.We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both MagEIS and REPT instruments on the Van Allen Probes mission. Data from the MagEIS instrument establishes the behavior of lower energy (<1MeV) electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the EMFISIS instrument on board Van Allen Probes, SCM and FGM instruments onboard THEMIS, and the low altitude polar orbiting POES satellite. These observations suggest that, during this time period, both radial transport and local in-situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (<1MeV) electrons, while the effects of in-situ energization by interaction of chorus waves are prominent in the higher energy electrons.

Kanekal, S.; Baker, D.; Henderson, M.; Li, W.; Fennell, J.; Zheng, Y.; Richardson, I.; Jones, A.; Ali, A.; Elkington, S.; Jaynes, A.; Li, X.; Blake, J.; Reeves, G.; Spence, H.; Kletzing, C.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021395

CME; HSS; Van Allen Probes; IP shock; relativistic electrons

Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales

To improve our understanding of the role of electromagnetic ion cyclotron (EMIC) waves in radiation belt electron dynamics, we perform a comprehensive analysis of EMIC wave-induced resonant scattering of outer zone relativistic (>0.5 MeV) electrons and resultant electron loss time scales with respect to EMIC wave band, L shell, and wave normal angle model. The results demonstrate that while H+-band EMIC waves dominate the scattering losses of ~1\textendash4 MeV outer zone relativistic electrons, it is He+-band and O+-band waves that prevail over the pitch angle diffusion of ultrarelativistic electrons at higher energies. Given the wave amplitude, EMIC waves at higher L shells tend to resonantly interact with a larger population of outer zone relativistic electrons and drive their pitch angle scattering more efficiently. Obliquity of EMIC waves can reduce the efficiency of wave-induced relativistic electron pitch angle scattering. Compared to the frequently adopted parallel or quasi-parallel model, use of the latitudinally varying wave normal angle model produces the largest decrease in H+-band EMIC wave scattering rates at pitch angles < ~40\textdegree for electrons > ~5 MeV. At a representative nominal amplitude of 1 nT, EMIC wave scattering produces the equilibrium state (i.e., the lowest normal mode under which electrons at the same energy but different pitch angles decay exponentially on the same time scale) of outer belt relativistic electrons within several to tens of minutes and the following exponential decay extending to higher pitch angles on time scales from <1 min to ~1 h. The electron loss cone can be either empty as a result of the weak diffusion or heavily/fully filled due to approaching the strong diffusion limit, while the trapped electron population at high pitch angles close to 90\textdegree remains intact because of no resonant scattering. In this manner, EMIC wave scattering has the potential to deepen the anisotropic distribution of outer zone relativistic electrons by reshaping their pitch angle profiles to \textquotedbllefttop-hat.\textquotedblright Overall, H+-band and He+-band EMIC waves are most efficient in producing the pitch angle scattering loss of relativistic electrons at ~1\textendash2 MeV. In contrast, the presence of O+-band EMIC waves, while at a smaller occurrence rate, can dominate the scattering loss of 5\textendash10 MeV electrons in the entire region of the outer zone, which should be considered in future modeling of the outer zone relativistic electron dynamics.

Ni, Binbin; Cao, Xing; Zou, Zhengyang; Zhou, Chen; Gu, Xudong; Bortnik, Jacob; Zhang, Jichun; Fu, Song; Zhao, Zhengyu; Shi, Run; Xie, Lun;

Published by: Journal of Geophysical Research: Space Physics      Published on: 09/2015

YEAR: 2015     DOI: 10.1002/2015JA021466

electron loss time scales; EMIC waves; outer radiation belt; relativistic electrons; resonant wave-particle interactions

Source and Seed Populations for Relativistic Electrons: Their Roles in Radiation Belt Changes

Strong enhancements of outer Van Allen belt electrons have been shown to have a clear dependence on solar wind speed and on the duration of southward interplanetary magnetic field. However, individual case study analyses also have demonstrated that many geomagnetic storms produce little in the way of outer belt enhancements and, in fact, may produce substantial losses of relativistic electrons. In this study, focused upon a key period in August-September 2014, we use GOES geostationary orbit electron flux data and Van Allen Probes particle and fields data to study the process of radiation belt electron acceleration. One particular interval, 13-22 September, initiated by a short-lived geomagnetic storm and characterized by a long period of primarily northward IMF, showed strong depletion of relativistic electrons (including an unprecedented observation of long-lasting depletion at geostationary orbit) while an immediately preceding, and another immediately subsequent, storm showed strong radiation belt enhancement. We demonstrate with these data that two distinct electron populations resulting from magnetospheric substorm activity are crucial elements in the ultimate acceleration of highly relativistic electrons in the outer belt: the source population (tens of keV) that give rise to VLF wave growth; and the seed population (hundreds of keV) that are, in turn, accelerated through VLF wave interactions to much higher energies. ULF waves may also play a role by either inhibiting or enhancing this process through radial diffusion effects. If any components of the inner magnetospheric accelerator happen to be absent, the relativistic radiation belt enhancement fails to materialize.

Jaynes, A.N.; Baker, D.N.; Singer, H.J.; Rodriguez, J.V.; Loto\textquoterightaniu, T.M.; Ali, A.; Elkington, S.R.; Li, X.; Kanekal, S.G.; Fennell, J.F.; Li, W.; Thorne, R.M.; Kletzing, C.A.; Spence, H.E.; Reeves, G.D.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 07/2015

YEAR: 2015     DOI: 10.1002/2015JA021234

Radiation belts; relativistic electrons; substorms; ULF waves; Van Allen Probes; VLF waves

2014

On the cause and extent of outer radiation belt losses during the 30 September 2012 dropout event

On 30 September 2012, a flux \textquotedblleftdropout\textquotedblright occurred throughout Earth\textquoterights outer electron radiation belt during the main phase of a strong geomagnetic storm. Using eight spacecraft from NASA\textquoterights Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Van Allen Probes missions and NOAA\textquoterights Geostationary Operational Environmental Satellites constellation, we examined the full extent and timescales of the dropout based on particle energy, equatorial pitch angle, radial distance, and species. We calculated phase space densities of relativistic electrons, in adiabatic invariant coordinates, which revealed that loss processes during the dropout were > 90\% effective throughout the majority of the outer belt and the plasmapause played a key role in limiting the spatial extent of the dropout. THEMIS and the Van Allen Probes observed telltale signatures of loss due to magnetopause shadowing and subsequent outward radial transport, including similar loss of energetic ring current ions. However, Van Allen Probes observations suggest that another loss process played a role for multi-MeV electrons at lower L shells (L* < ~4).

Turner, D.; Angelopoulos, V.; Morley, S.; Henderson, M.; Reeves, G.; Li, W.; Baker, D.; Huang, C.-L.; Boyd, A.; Spence, H.; Claudepierre, S.; Blake, J.; Rodriguez, J.;

Published by: Journal of Geophysical Research: Space Physics      Published on: 03/2014

YEAR: 2014     DOI: 10.1002/2013JA019446

dropouts; inner magnetosphere; loss; Radiation belts; relativistic electrons; Van Allen Probes

2011

Understanding relativistic electron losses with BARREL

The primary scientific objective of the Balloon Array for RBSP Relativistic Electron Losses (BARREL) is to understand the processes responsible for scattering relativistic electrons into Earth\textquoterights atmosphere. BARREL is the first Living with a Star Geospace Mission of Opportunity, and will consist of two Antarctic balloon campaigns conducted in the 2012 and 2013 Austral summer seasons. During each campaign, a total of 20 small View the MathML source(\~20kg) balloon payloads will be launched, providing multi-point measurements of electron precipitation in conjunction with in situ measurements from the two RBSP spacecraft, scheduled to launch in May 2012. In this paper we outline the scientific objectives of BARREL, highlighting a few key science questions that will be addressed by BARREL in concert with other ILWS missions in order to understand loss processes in the radiation belts. A summary of observations from the 2008/2009 BARREL test flight is also presented. Electron precipitation was observed during a geomagnetic storm on February 14\textendash18, 2009. This storm, though relatively weak (Dst=-36 nT), was remarkably effective in increasing the trapped electron population.

Millan, R.M.;

Published by: Journal of Atmospheric and Solar-Terrestrial Physics      Published on: 07/2011

YEAR: 2011     DOI: 10.1016/j.jastp.2011.01.006

inner magnetosphere; precipitation; Radiation belts; relativistic electrons; Van Allen Probes; wave-particle interactions



  1